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Asymptotic analysis is carried out to derive a nonlinear wave equation for flexural motions of
an elastic beam of circular cross-section travelling along the centre-axis of an air-filled, circular
tube placed coaxially. Both the beam and tube are assumed to be long enough for end-effects
to be ignored and the aerodynamic loading on the lateral surface of the beam is considered.
Assuming a compressible inviscid fluid, the velocity potential of the air is sought systematically
in the form of power series in terms of the ratios of the tube radius to a wavelength and of a
typical deflection to the radius. Evaluating the pressure force acting on the lateral surface of
the beam, the aerodynamic loading including the effects of finite deflection as well as of air’s
compressibility and axial curvature of the beam are obtained. Although the nonlinearity arises
from the kinematical condition on the beam surface, it may be attributed to the presence of the
tube wall. With the aerodynamic loading thus obtained, a nonlinear wave equation is derived,
whereas linear theory is assumed for the flexural motions of the beam. Some discussions are
given on the results. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper considers nonlinear aerodynamic loading on an elastic beam travelling
in an air-filled tube along the axial direction to derive a wave equation for flexural motions
of the beam. A study of this problem is motivated by an interest of fluid-structure
interactions related to dynamics of magnetically levitated trains travelling in a long tunnel
at high speed (a Mach number 0�4 or even higher). Because the trains have no mechanical
supports but auxiliary guiding wheels, they are prone to destabilization by aerodynamic
loading. Destabilization will give rise not only to vibrations of vehicles but also to wave
propagation along the train, since trains are usually very long compared with their lateral
dimension.

To make an analytical model, some simplifications are needed focusing on specific
aspects of particular phenomena. One simple model is to regard the train as a spatially
periodic structure consisting of many rigid beams of finite length articulated by elastic
couplers, which provide a restoring moment proportional to difference in deflection angle
at the end of two beams adjacent to each other. This discrete model may be appropriate
for disturbances of short wavelength comparable to each vehicle’s length. The other model
is to regard the train as a long elastic beam by neglecting articulations. This continuous
model may be good for disturbances of long wavelength. Furthermore, there are required
models to treat end-effects. In the following, the continuous model is adopted by
0889-9746/02/050597+16 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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assuming, for simplicity, that both the beam and the tube extend infinitely, to ignore
the end-effects, and only effects of aerodynamic loading on the lateral surface are
considered.

Here it is remarked that the continuous model may be reduced from the discrete model
by taking a long-wavelength limit. In fact, if a continuum approximation is made, a
flexural wave equation for a uniform beam can be derived with the bending rigidity �l, �
and l being, respectively, a spring constant of the coupler (moment/radian angle) and the
length of each rigid beam. Furthermore, if each rigid beam is replaced by an elastic beam,
i.e., the beam bending rigidity is taken into account, wave propagation exhibits a very
complicated behaviour due to multiple reflection and transmission at the couplers. Wave
propagation in such a spatially periodic structure may be called a Bloch wave after the
name in solid state physics [see, e.g., Kittel (1976), and Sugimoto & Horioka (1995)]. In
this system, there appear two modes associated with the couplers and beams. Each Bloch
dispersion relation shows a banded structure in frequency with passing and stopping
bands, which correspond, respectively, to propagation and attenuation. If a low-frequency
and long-wavelength limit is taken, the dispersion relation for the propagation is reduced
to the one of a flexural wave on a uniform beam. Thus the effect of the couplers may be
neglected. Detailed discussions will be given elsewhere.

When the fluid is moving relative to the beam, there may occur not only attenuation but
also growth of the waves leading to instability. Although in a different context from the
present one, Howe (1986) discusses attenuation and diffraction of flexural waves at gaps in
a plate placed in a still fluid. The interesting result is that when a frequency of flexural
waves is higher than a coincidence frequency at which the speed of the flexural waves in
vacuo is equal to the sound speed, no attenuation occurs. Because the speed of the flexural
waves in the present problem is estimated to be slower than the sound speed, such a
phenomenon is not expected to occur. Similarly, however, there will be many interesting
phenomena associated with the discontinuity in the system depending on the ratio of the
bending rigidity of the beam to the bending rigidity �l of the coupler, and on the relative
speed. But in this paper, attention is focused on the propagating waves in the continuous
model to derive a wave equation, by which their instability will be discussed.

In a train-tunnel problem, a Reynolds number is very high and a boundary-layer
separation does not occur for such a slender body. Thus a compressible but inviscid flow
field is assumed for the air in an annular region between the beam and the tube. When a
beam executes lateral motions, the lateral force is brought about by the acceleration
reaction of fluid and the beam mass is increased by the induced mass (Batchelor 1970).
This force gives rise to convective instability if the beam is travelling relative to the
surrounding fluid. When flexural motions of the beam are considered, effects of axial
curvature and of air compressibility modify this result. For infinitesimally small deflection,
it is found from the linear theory that the flexural rigidity of the beam acts to suppress the
instability together with the effect of axial curvature on the induced mass (Sugimoto &
Kugo 2001). However, nonlinear effects due to finite deflection are as yet unknown.
To answer this question, we clarify the aerodynamic loading on an elastic beam of
circular cross-section placed coaxially in a tube of circular cross-section. This leads
to the derivation of a compact, nonlinear wave equation for flexural motions of an elastic
beam.

In what follows, we formulate in Section 2 the problem and present the aerodynamic
equations and the flexural wave equation of the beam. In Section 3, a systematic
asymptotic expansion is developed in terms of two parameters measuring small but finite
deflection and long but finite wavelength relative to the tube radius. No ad hoc
assumptions are introduced except order estimation in the expansion. The aerodynamic
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loading is obtained by specifying the flow field, and then a nonlinear wave equation for the
flexural motions of the beam is derived. Some discussions are given in Section 4.

2. FORMULATION OF THE PROBLEM

2.1. Geometrical Configuration

Suppose that an elastic beam of radius b is placed coaxially in a rigid tube of radius Rð> bÞ,
both of infinite extent, and that the annular region is filled with air. Let the beam be
travelling at constant, subsonic speed U in the axial direction. Take the x-axis along the
centre-axis of the tube in the direction of travel, and the y- and z-axis in a plane normal to
the x-axis with the origin on the centre-axis. The plane polar coordinates ðr; �; Þ are also
used in the ðy; zÞ plane as shown in Figure 1.

To suppress instability, we consider a restoring force on the beam, which is proportional
to the magnitude of deflection, and assume that the deflection is limited to the y direction
only. If a mirror image is taken with respect to the plane z ¼ 0, the present configuration
may model a tunnel in which a train of semi-circular cross-section travels inside a tunnel of
a semi-circular one, and no vertical motions, i.e., no ground effects are considered.

2.2. Aerodynamic Equations

The surrounding air is assumed to be an inviscid, ideal gas. The basic equations consist of
the equations of continuity, momentum and energy. No gravity is taken into account.
Because viscosity is ignored, the entropy is conserved and the homentropic flow is
assumed. This is substantially stipulated by use of the adiabatic relation between the
Fig. 1. Cross-sectional configuration of the tube normal to the axis of the tube where the beam of radius b is
placed coaxially in the tube of radius R and the air is filled in the annular region: the x-axis is taken out of the
paper while the y- and z-axis are taken in the paper and the plane polar coordinates ðr; yÞ are also used: the
deflection of the beam, denoted by hðx; tÞ, is limited in the y direction only and the beam is subjected to a restoring

force proportional to the magnitude of the deflection.
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density and the pressure. Thus, the basic equations are given as follows:

1

�;

q�;
qt
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þr�u ¼ 0; ð2:1Þ
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where r, u and p denote, respectively, the density, the velocity vector, and the pressure in
the flow field, t being the time; the subscript 0 of p and r designates the respective constant
values in equilibrium, g being the ratio of specific heats.

Introducing the velocity potential f via u ¼ rf, equations (2.1) and (2.2) are combined
into a single wave equation of f. Firstly, equation (2.2) is integrated by Bernoulli’s
theorem as
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¼ 0: ð2:4Þ

Next we express the derivatives of r divided by r in equation (2.1) in terms of u alone.
Differentiating equation (2.4) with respect to t, we have
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is the local sound speed and is calculated by equation

(2.4) with equation (2.3) in terms of f as follows:
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Þ being the linear sound speed. This also gives the pressure in terms of

f as
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To form u�rr, we take the inner product of equation (2.2) with u to obtain
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Using equations (2.5) and (2.8) to express the first term of equation (2.1) involving r in
terms of f, it follows that
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Further, eliminating a by equation (2.6), we arrive at the wave equation for f:
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2.3. Flexural Wave Equation

Although nonlinear aerodynamic equations are employed for the air, the elastic behaviour
of the beam is assumed to be modelled by the linear theory. Introducing a new coordinate
x moving with the beam at speed U in the positive direction of x, and identifying t with t,

x ¼ x�Ut and t ¼ t; ð2:11Þ

the flexural wave equation is given for deflection Hðx; tÞ as follows:

m
@2H

@t2
þ EI

@4H

@x4
þ KH ¼ Q; ð2:12Þ

where m and EI denote, respectively, the density of the beam per unit axial length and the
bending rigidity, while K and Q represent, respectively, the spring constant of the restoring
force and the total pressure force acting on the lateral surface of the beam per unit axial
length.

When equation (2.12) is expressed in terms of x and t, it is transformed into

m
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with hðx; tÞ ¼ Hðx; tÞ and qðx; tÞ ¼ Qðx; tÞ. Here, q is calculated by integrating the pressure
on the beam surface per unit axial length as follows:

q ¼ �
Z 2p

0

pbb cos y0 dy0; ð2:14Þ

where pb denotes the pressure on the beam surface and y0 measures a circumferential angle
on the periphery of the beam’s cross-section normal to the x-axis.

2.4. Boundary Conditions

Next we consider the boundary conditions. Because inviscid motions are assumed, the slip
condition is imposed on the tube wall. It is given simply by

n�rf ¼ 0; ð2:15Þ

where n is the unit vector directed inward normal to the wall. On the beam surface, the
kinematical condition is imposed. Denoting the surface by Fðx; y; z; tÞ ¼ 0, it is specified
formally by

@F

@t
þrf�rF ¼ 0 on F ¼ 0: ð2:16Þ

Here, F is given in terms of the unknown deflection h. We now look for its explicit
dependence on h.

When the beam is bent elastically, linear theory assumes that (i) a cross-section normal
to the centre-line before deflection remains normal to it after deflection, (ii) the shape of
the cross-section remains unchanged and (iii) the stretching of the centre-line is negligible.
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To implement these assumptions in F , let us consider the beam at a point x ¼ X . When the
beam is deflected, the centre-line at this point is displaced to a position at y ¼ Y ¼ hðX ; tÞ,
while the cross-section normal to the x-axis rotates about the z-axis. We take the y0-axis
normal to the z-axis in the cross-section rotated with the origin on the centre-line of the
beam (see Figure 2). A point on periphery of the cross-section is specified by an angle y0

measured anticlockwise from the y0-axis [Figure 2(b)]. Let the position vector directed
from the centre-line at x ¼ X to the point on the periphery be denoted by r0. Denoting the
unit vectors in the x, y and z directions by i, j, and k, respectively, and the unit vector in the
y0 direction by j0, r0 is written as

r0 ¼ b cos y0j0 þ b sin y0k: ð2:17Þ

The unit vector j0 is given by ð�sin a; cos a; 0Þ where a is the angle between the tangent to
the centre-line and the x-axis so that tan a ¼ @h=@x. The coordinates ðx; y; zÞ of a point on
the periphery are given by
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z
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1
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1
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b sin y0

0
B@

1
CA: ð2:18Þ

Since Y ¼ hðX ; tÞ, the following relation must be satisfied:

y� b cos y0cos a ¼ hðxþ b cos y0sin aÞ; ð2:19Þ

with t suppressed. The function F is expressed by eliminating the parameter y0 in equation
(2.19) with z ¼ b sin y0.

The linear theory of the beam assumes that a typical axial wavelength of deflection,
denoted by l, is much longer than a typical deflection c. Here, c is smaller than the tube
radius, of course. This implies that the angle a is small and that

jaj 

@h

@x

����
����
 c

l
51: ð2:20Þ
Fig. 2. Geometrical configuration of the deflected beam: (a) displays the cross-section of the tube cut by the
plane z ¼ 0 where a point on the centre-line of the beam at x ¼ X is deflected to a new position y ¼ hðXÞ and the
original cross-section at x ¼ X rotates about the z-axis by angle a; (b) displays the cross-section rotated where the
y0 axis is taken normal to the z-axis and y0 is the angle measured anticlockwise from the y0-axis; (c) displays the

cross-section normal to the x-axis.
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Furthermore from the estimation that
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51; ð2:21Þ

we may expand h in equation (2.19) around x, and neglect the errors of Oða3b=lÞ as

y� b cos y0cos a ¼ hþ
@h

@x
b cos y0 sin aþ Oða3b=lÞ: ð2:22Þ

Eliminating the parameter y0, F is expressed in terms of h as

Fðx; y; z; tÞ ¼
ðy� hÞ2

1 þ ð@h=@xÞ2
þ z2 � b2 ¼ 0: ð2:23Þ

This is simply the equation for an ellipse which is the cross-section of the beam deflected
with a plane normal to the x-axis. Although this is anticipated intuitively, the important
point is that the order of error is now specified. However, because the linear theory ignores
the stretching of the centre-line, ð@h=@xÞ2 in equation (2.23) should be ignored. This is
nothing but to regard the deflection as a translation of the beam in the y direction while
neglecting the inclination, and the periphery of the cross-section normal to the x-axis
remains to be circle. Hence use of the linear theory is justified with the proviso that terms
of Oðc2=l2Þ are omitted. This order will be designated by OðE2mÞ later.

Using equation (2.23) with neglect of ð@h=@xÞ2, the kinematical condition (2.16) is given
explicitly as follows:
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For this to be expressed in terms of the polar coordinates (y ¼ r cos y and z ¼ r sin y), we
only have to make the following substitutions:
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@f
@z

¼
@f
@r

sin yþ
1

r

@f
@y

cos y: ð2:25Þ

3. ASYMPTOTIC EXPANSION

3.1. Normalization

At the outset, we start by normalizing the basic equations given in the preceding section.
Using the typical magnitude of deflection and axial wavelength already introduced, all the
dimensional variables on the left-hand sides below are replaced by the right-hand ones as
follows:

ðx; y; z; r; tÞ ! ðlx; Ry; Rz; Rr; lt=a0Þ;

ðh; f; p� p0; qÞ ! ch;
a0cR

l
f;

r0a
2
0cR

l2
p0;

r0a
2
0cR

2

l2
q

� �
: ð3:1Þ

Because a typical time is measured by l=a0, the normalization of f is suggested by the fact
that the radial velocity is caused by the temporal change of the deflection of the beam. The
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normalization of the excess pressure p� p0 is suggested by equation (2.7), where the
pressure fluctuation is primarily brought about by r0@f=@t. Since we are concerned with
weakly nonlinear and long waves propagating along the beam, the typical magnitude of
deflection is much smaller than the tube radius R, while the typical wavelength l is much
longer than R. These assumptions are specified by the following two small parameters:

E ¼
c

R
51 and m ¼

R

l

� �2

51: ð3:2Þ

Note that assumption (2.20) is covered by the first assumption and a is regarded as being
of the order of E

ffiffiffi
m

p
. In the following, we discuss a case in which the values of these

parameters are small but finite.
By normalizing equation (2.10), it is found that the linear acoustic wave equation is

valid within the order of m:
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¼ OðEmÞ: ð3:3Þ

Thus the leading nonlinearity in the flow field turns out to be of OðEmÞ. Note that the terms
with m represent small contributions from air compressibility. The flexural wave equation
(2.12) is made dimensionless as
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with q defined by

q ¼ �
Z 2p

0

p0bn cos y0 dy0; ð3:5Þ

where p0b denotes the normalized excess pressure on the beam surface, and the parameters
M, J, G, s and n are defined, respectively, as

M ¼
U

a0
; J ¼

EI

mR2a2
0

; G ¼
Kl2

ma2
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; s ¼
pr0b

2

m
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b
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Here, M is the Mach number of the travelling beam, and J, G and s represent, respectively,
the ratio of a typical speed of flexural waves

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mR2

p
to the sound speed, the ratio of the

natural angular frequency of the transverse motions of the beam due to the restoring force,
oK ð¼

ffiffiffiffiffiffiffiffiffiffi
K=m

p
Þ, to a frequency a0=l, and the ratio of a typical induced mass of the beam to

the beam mass per unit axial length. Remember that the induced mass of the straight, circular
cylinder placed in unbounded fluid of density r0 is given by pr0b

2 per unit length for its
transverse motion to the axis (Batchelor 1970). For reference, we evaluate these parameters in
a plausible case. Suppose that a beam having m = 2�4 � 103 kg/m, EI ¼ 2 � 109 kg m3=s2,
K ¼ 1�1 � 105 N=m2 ðoK=2p ¼ 1�1Hz) and b ¼ 1�5 m is travelling at M ¼ 0�4 in a tube
having R ¼ 5m. Under atmospheric pressure at room temperature, a0 ¼ 340m/s and
r0 ¼ 1�2 kg/m3, the parameters take the following numerical values: J ¼ 0�29,
G ¼ KR2=ma2

0m ¼ 1�0 � 10�2=m, s ¼ 3�5 � 10�3 and n ¼ 0�3. Note that the definition of G
differs from KR2=ma2

0 used in Sugimoto & Kugo (2001) by m, so here G depends on l and it
becomes smaller for disturbances of shorter wavelength.

Next, we consider the boundary conditions. Condition (2.15) on the tube wall is
imposed now at r ¼ 1 as

@f
@r

¼ 0 at r ¼ 1: ð3:7Þ
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The other condition on the beam surface needs some remarks. Surface (2.23) is normalized
on neglecting ð@h=@xÞ2 as follows:

ðy� EhÞ2 þ z2 � n2 ¼ OðE2mÞ: ð3:8Þ

We now want to express the periphery of the cross-section deflected in terms of the polar
coordinates r and y. According to the definition of y0, we have

y ¼ r cos y ¼ Ehþ n cos y0 þ OðE2mÞ; ð3:9Þ

z ¼ r sin y ¼ n sin y0 þ OðE2mÞ: ð3:10Þ

Eliminating y0 between equations (3.9) and (3.10), r on the periphery of the cross-section is
expressed in terms of y as

r ¼ nþ Eh cos y�
E2h2

2n
sin2yþ OðE3; E2mÞ: ð3:11Þ

This is simply the result of the second cosine formula expanded by E. Substituting this into
equation (3.10), y0 is expressed in terms of y as

y0 ¼ yþ
Eh
n

sin yþ OðE3; E2mÞ; ð3:12Þ

invoking Taylor’s expansion of sin y0 around y. Note that y0 does not include any terms of
OðE2Þ. On this periphery, kinematical condition (2.24) is given, after normalization and
expansion with respect to E and m, in the polar coordinates as
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@h
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cos yþ E

h
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@t
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@f
@r

cos yþ
1

r

@f
@y

sin y
� �

¼ OðEmÞ: ð3:13Þ

3.2. Asymptotic Expansion

Since m is small, we expand f in terms of m as follows:

f ¼ fð0Þ þ mfð1Þ þ m2fð2Þ þ � � � ; ð3:14Þ

where fðnÞ ðn ¼ 0; 1; 2; :::Þ depend on r, y, x and t. Because the problem is periodic with
respect to y and symmetric with respect to the plane z ¼ 0, each fðnÞ may be expanded
further into a Fourier cosine series as follows:

fðnÞ ¼
X1
m¼0

fðnÞ
m cosmy; ð3:15Þ

with fðnÞ
m ¼ fðnÞ

m ðr; x; tÞ. In linear theory ðE ! 0Þ, only one harmonic with m ¼ 1 suffices for
the solution. The harmonics other than m ¼ 1 are brought about by nonlinear effects.
Note, therefore, that fðnÞ

m for m=1 are necessarily accompanied by powers of E. With
expression (3.15) substituted into expression (3.14), the expansion results in a double
asymptotic expansion with respect to m and E. Hence, it would be straightforward to
expand f, as ansatz, in the powers of E and m from the outset. But in order to carry the
expansion up to higher order, many unnecessary expressions will then have to be written
down. To avoid them, we expand f with respect to m first and then seek their coefficients in
the expansion in terms of E. In what follows, we determine the expansion of f so that the
lowest contributions of OðE2; mÞ may be included in the wave equation desired.
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Substituting expression (3.14) into equation (3.3), we have from the terms of Oð1Þ
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Decomposing fð0Þ into the Fourier series, it follows from (3.16) that
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fð0Þ
m ¼ 0: ð3:17Þ

The solutions fð0Þ
m are obtained immediately as
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m ¼
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0 þ g
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0 ln r; ðm ¼ 0Þ;

rmf ð0Þm þ
gð0Þm

rm
; ðm ¼ 1; 2; 3; :::Þ;

8><
>: ð3:18Þ

where f ð0Þm ðx; tÞ and gð0Þm ðx; tÞ ðm ¼ 0; 1; 2; :::Þ are unknown functions of x and t.
For each Fourier component, the boundary condition on the tube wall requires that

@fð0Þ
m

@r
¼ 0 at r ¼ 1; ð3:19Þ

where m ¼ 0; 1; 2; :::. Imposing these boundary conditions, gð0Þm are expressed in terms of
f ð0Þm , and fð0Þ

m are given as follows:
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>: ð3:20Þ

Boundary condition (3.13) on beam surface (3.11) is given, upon neglect of OðEmÞ, as

@fð0Þ

@r
�

@h

@t
cos y ¼ � E

h

r

@h

@t
�

@fð0Þ

@r
cos yþ

1

r

@fð0Þ

@y
sin y

 !
: ð3:21Þ

Since E is small, this condition suggests that fð0Þ should be sought in the following form:

fð0Þ ¼ fð0Þ
1 cos yþ Eðfð0Þ

0 þ fð0Þ
2 cos 2yÞ þ E2fð0Þ

3 cos3yþ OðE3Þ: ð3:22Þ

But we ignore the terms of OðEÞ, for a moment, to look for the lowest-order relation. Then
equation (3.21) is reduced to

@fð0Þ
1

@r
¼

@h

@t
þ OðE2Þ at r ¼ n: ð3:23Þ

Substituting fð0Þ
1 into this, f

ð0Þ
1 is expressed in terms of h as

f
ð0Þ
1 ¼ �

n2

1 � n2
@h

@t
þ OðE2Þ: ð3:24Þ

This is simply the linear solution.
We now proceed to take f up to the next higher-order terms of OðE; mÞ as

f ¼ rþ
1

r

� �
f
ð0Þ
1 cos yþ E f

ð0Þ
0 þ r2 þ

1

r2

� �
f
ð0Þ
2 cos 2y

� 	
þ mfð1Þ

1 cos yþ OðE2; Em;m2Þ: ð3:25Þ
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Substituting this into equation (3.3), we have from the coefficient of cos y

@2

@r2
þ

1

r

@

@r
�

1

r2

� �
fð1Þ

1 ¼ rþ
1

r

� �
@2

@t2
�

@2

@x2

� �
f
ð0Þ
1 : ð3:26Þ

Using the boundary condition on the tube wall, we obtain

fð1Þ
1 ¼

r3

8
þ

r

2
ln r�

7

8
r

� �
@2

@t2
�

@2

@x2

� �
f
ð0Þ
1 þ rþ

1

r

� �
f
ð1Þ
1 ; ð3:27Þ

where f
ð1Þ
1 ðx; tÞ is arbitrary.

Next we impose the boundary condition on the beam surface. After substitution of
expression (3.25) into condition (3.13), and setting r equal to that given by expression
(3.11), we expand the condition into the Fourier series. After a little lengthy calculation,
we have from the coefficient of cos y

1 �
1

n2

� �
ð f ð0Þ1 þ mf ð1Þ1 Þ �

@h

@t
þ E2

1

n2
�

4

n4

� �
h2f

ð0Þ
1 � 1 �

3

n4

� �
hf

ð0Þ
2 �

h2

n2
@h

@t

� 	

þ m
3n2

8
þ

1

2
ln n�

3

8

� �
@2

@t2
�

@2

@x2

� �
f
ð0Þ
1 ¼ OðE4; E2mÞ: ð3:28Þ

From the coefficient of cos 2y, we obtain

h

n4
f
ð0Þ
1 þ 1 �

1

n4

� �
f
ð0Þ
2 ¼ OðE2;mÞ: ð3:29Þ

Solving f
ð0Þ
1 þ mf ð1Þ1 and f

ð0Þ
2 from relations (3.28) and (3.29), and using the lowest relation

(3.24), we have

f
ð0Þ
1 þ mf ð1Þ1 ¼ �

n2

1 � n2
@h

@t
�

mn4

ð1 � n2Þ2
1

2
ln n�

3

8
þ

3n2

8

� �
@2

@t2
�

@2

@x2

� �
@h

@t

�
2E2n4

ð1 � n2Þ3ð1 þ n2Þ
h2@h

@t
þ OðE4; E2mÞ ð3:30Þ

and

f
ð0Þ
2 ¼ �

n2

ð1 � n2Þ2ð1 þ n2Þ
h
@h

@t
þ OðE2Þ: ð3:31Þ

Thus the higher-order terms neglected in relation (3.24) are now specified simultaneously
in the process of determining the lowest expression of f

ð0Þ
2 . For the component independent

of y, incidentally, the boundary condition is automatically satisfied within the order of E by
use of relation (3.24) so that f

ð0Þ
0 is left undetermined within the present approximation. It

will turn out shortly that the contribution from f
ð0Þ
0 to the total force acting on the beam

vanishes. Therefore, we do not pursue f
ð0Þ
0 by going into higher-order relations.

Following the same step-by-step method, we will be able to carry expansion (3.14) up to
any order desired. As we proceed, unknown higher-order coefficients are determined, while
higher-order corrections to the coefficients so far obtained are determined consistently.

3.3. Evaluation of the Pressure Force and Derivation of Wave Equation

With f available, we proceed to evaluate the pressure force q acting on the beam. Before
doing so, equation (2.7) must be made dimensionless according to the replacement of
equation (3.1). Expanding equation (2.7) thus normalized in terms of E and m, the
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dimensionless excess pressure p0 is given by

p0 ¼ �
@f
@t

�
E
2

@f
@r

� �2

þ
1

r2
@f
@y

� �2
" #

þ OðEmÞ: ð3:32Þ

The excess pressure on the beam surface p0b is evaluated as a function of y by substitution
of relation (3.11) for r in equation (3.32) and is given by

p0b ¼
nð1 þ n2Þ
1 � n2

@2h

@t2
� E2

ð1 � n2 � 17n4 þ n6Þ

8nð1 � n2Þ3
h2@

2h

@t2
� E2

ð1 � n2 � 2n4Þ

nð1 � n2Þ3
h

@h

@t

� �2
"

�
mn3

ð1 � n2Þ2
ln

1

n
þ

5

4
� n2 �

n4

4

� �
@2

@t2
�

@2

@x2

� �
@2h

@t2

	
cos y

� E
@f ð0Þ0

@t
þ

h

2

@2h

@t2
þ

1 þ n4

2ð1 � n2Þ2
@h

@t

� �2
" #

þ E
1 þ n2 þ 3n4 � n6

2ð1 � n2Þ2ð1 þ n2Þ
h
@2h

@t2

�

þ
1 þ n2 þ 2n4

ð1 � n2Þ2ð1 þ n2Þ

@h

@t

� �2
#

cos 2yþ OðE2Þ cos 3y: ð3:33Þ

The total force q is obtained by integrating p0b along the periphery of the cross-section
with respect to y0 as

q ¼ �
Z 2p

0

np0b cos y0 dy0: ð3:34Þ

Since p0b is now available as the function of y, relation (3.12) between y0 and y is used to
change the variable y0 to y as

cos y0 dy0 ¼ 1 �
3E2h2

8n2

� �
cos yþ

Eh
n

cos 2y
� 	

dyþ OðE2Þ cos 3y: ð3:35Þ

With this substitution, the integral is executed with respect to y from 0 to 2p. Then q is
obtained as

q

pn2
¼ �

1 þ n2

1 � n2

� �
@2h

@t2
�

2E2n2

ð1 � n2Þ3ð1 þ n2Þ
h
@2h2

@t2

þ
mn2

ð1 � n2Þ2
ln

1

n
þ

ð1 � n2Þð5 þ n2Þ
4

� 	
@2

@t2
�

@2

@x2

� �
@2h

@t2
þ OðE4; E2m;m2Þ: ð3:36Þ

By substitution of this into equation (3.4), we derive the following nonlinear wave
equation for h:

@

@t
þM

@

@x

� �2

hþ mJ
@4h

@x4
þ Gh ¼ � ss

@2h

@t2
� E2sah

@2h2

@t2
þ msZ

@2

@t2
�

@2

@x2

� �
@2h

@t2
; ð3:37Þ

where s, a and b are defined as

s ¼
1 þ n2

1 � n2
; a ¼

2n2

ð1 � n2Þ3ð1 þ n2Þ
and Z ¼

n2

ð1 � n2Þ2
ln

1

n
þ

ð1 � n2Þð5 þ n2Þ
4

� 	
: ð3:38Þ

This is the desired equation to describe the propagation of flexural waves on the elastic
beam under the nonlinear aerodynamic loading.
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4. DISCUSSIONS

The analysis has been developed so that the first-order corrections of E and m may be
included in the resultant wave equation (3.37). Because of the cubic nonlinearity, the
correction is of order E2 not by E. It should be remarked that the corrections are greater
than the errors of OðE2mÞ inherent in the use of the linear flexural wave equation.

It is revealed from equation (3.37), and also relation (3.36), that the aerodynamic
loading consists of three terms on the right-hand side, all of which are accompanied by the
parameter s. As expected, the coefficient ss of the first term is the induced mass (relative to
m) of the straight beam confined in the concentric tube (Paı̈doussis 1998). The factor s
reflects the effect of the tube wall. In fact, as the beam becomes thin, i.e., n ! 0, s tends to
unity and ss approaches the induced mass in unbounded fluid. The nonlinearity due to
finite deflection arises directly from the kinematical condition on the beam surface; but it
may be attributed to the presence of the tube wall at finite distance. In fact, the coefficient
a disappears in the limit as n ! 0.

When the limit m ! 0 is taken in relation (3.36), the result gives the fluid dynamic
loading on a straight rigid beam executing uniform, transverse motions in an
incompressible fluid [of course, it is also valid for a beam at rest in the axial direction
ðM ¼ 0Þ�. This force is also expressed in dimensional form as follows:

�pr0b
2 1 þ n2

1 � n2

� �
@2h

@t2
�

2pr0n
4

ð1 � n2Þ3ð1 þ n2Þ
h
@2h2

@t2
: ð4:1Þ

Developing the derivative of h2, the term with @2h=@t2 contributes substantially to an
increase of the induced mass by 2pr0b

2aðh=RÞ2, while the term with hð@h=@tÞ2 introduces
the force proportional to the product of h and the square of the velocity, which changes its
direction depending on the sign of deflection. Note that the second term in relation (4.1)
becomes pronounced as n ! 1. In passing, it is verified that the rate of change of the total
kinetic energy of the fluid in the annular region per unit axial length, denoted by E,
balances with the power input by the total force exerted on the fluid �q times the velocity
of the beam @h=@t:

dE

dt
¼ �q

@h

@t
; ð4:2Þ

where E is defined by

E ¼
1

2

Z 2p

0

dy
Z 1

rb

@f
@r

� �2

þ
1

r2
@f
@y

� �2
" #

r dr

¼
pn2

2

1 þ n2

1 � n2
þ

4E2n2h2

ð1 � n2Þ3ð1 þ n2Þ

� 	
@h

@t

� �2

; ð4:3Þ

where rb denotes r given by relation (3.11). Note that E is not only proportional to the
velocity squared but is dependent on h2. It is also verified that the rate of change of the
total momentum of fluid in the y direction, denoted by M, balances with the pressure
forces not only due to the beam but also to the tube wall. In fact, we have

dM

dt
¼ qwall � q; ð4:4Þ

where

M ¼
Z 2p

0

dy
Z 1

rb

@f
@r

cos y�
1

r

@f
@y

sin y
� �

r dr ¼ �pn2
@h

@t
; ð4:5Þ
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and qwall is given by

qwall ¼ �
Z 2p

0

p0 cos y dy ¼ �2p
n2

1 � n2
@2h

@t2
þ

E2n4

ð1 � n2Þ3ð1 þ n2Þ
h
@2h2

@t2

� 	
; ð4:6Þ

at r ¼ 1.
The effects of air compressibility and of axial curvature of the beam are taken into

account through the last term of equation (3.37). If both s and G are small enough, the
first term on the left-hand side remains the leading term. This implies that h is given by
hðx�MtÞ to the lowest order; i.e., the deflection is stationary with the beam. Using this,
i.e., replacing @h=@t with �M@h=@x, the last term on the right-hand side may be
approximated as

msZ
@2

@t2
�

@2

@x2

� �
@2h

@t2

 �msZð1 �M2ÞM2@

4h

@x4
: ð4:7Þ

This term may now be incorporated into the bending term on the left-hand side of
equation (3.37) as

@

@t
þM

@

@x

� �2

hþ mJs
@4h

@x4
þ Gh ¼ �ss

@2h

@t2
� E2sah

@2h2

@t2
; ð4:8Þ

with Js defined by

Js ¼ J þ sZð1 �M2ÞM2: ð4:9Þ

It is found that for M51, the effects of compressibility and of axial curvature act to
increase the bending rigidity.

Let us verify the validity of the linear terms of equation (3.37) by comparing the
dispersion relation with that of the exact theory. The full linear dispersion relation was
derived previously without making the assumption m51 (Sugimoto 1996). Assuming an
elementary solution in the form proportional to exp½iðkx� otÞ�, k and o being a
dimensionless wavenumber and a dimensionless frequency normalized, respectively, by
R�1 and a0=R, it is given as follows:

½ðo�MkÞ2 � Jk4 � mG�b2D4 ¼ ðs=nÞbD3o2; ð4:10Þ

with b2 ¼ k2 � o2 and D3 and D4 defined by

D3 ¼ I1ðbnÞK0
1ðbÞ � K1ðbnÞI01ðbÞ;

D4 ¼ I01ðbnÞK
0
1ðbÞ � K0

1ðbnÞI
0
1ðbÞ; ð4:11Þ

where I1 and K1 denote the modified Bessel functions of first order and the prime denotes
differentiation with respect to the argument. Figure 3 shows graphically the dispersion
curves given by (4.10) for M ¼ 0�4, J ¼ 0�29, mG ¼ 0�01, s ¼ 3�5 � 10�3 and n ¼ 0�3,
where the dotted line represents o ¼ Mk. For a real k � 0, there are many, real solutions
of o to equation (4.10), among which the four branches in joj � 5 are drawn for
0 � k � 5, and the curves for k50 are symmetric with respect to the origin. Although the
curves appear to cross each other, they are bent sharply without crossing.

Since we are concerned with the long waves and mG51, we expand equation (4.10)
around k ¼ 0. Then D3=ðbD4Þ is expanded for jbj51 as [see, e.g., Abramowitz & Stegun
(1972)]

D3

bD4
¼ �n

1 þ n2

1 � n2

� �
þ

n3

ð1 � n2Þ2
ln

1

n
þ

ð1 � n2Þð5 þ n2Þ
4

� 	
b2 þ Oðb4Þ: ð4:12Þ



Fig. 3. Graph of the full dispersion curves given by equation (4.10) for M ¼ 0�4, J ¼ 0�29, mG ¼ 0�01, s ¼
3�5� 10�3 and n ¼ 0�3 where the dotted line represents the line o ¼ Mk and the labels ‘A’ and ‘B’ indicate the

acoustic and beam modes, respectively, in the case of s ¼ 0.
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Using this, the dispersion relation (4.10) is expanded as

ðo�MkÞ2 � mJk4 � G ¼ �sso2 � msZðo2 � k2Þo2; ð4:13Þ

where k and o in equation (4.10) have been replaced by m1=2k and m1=2o, respectively, to be
consistent with normalization (3.1). This dispersion relation agrees with that of equation
(3.37) for a monochromatic wave of h in the form of exp½iðkx� otÞ�. This also endorses
the validity of the expansion.

5. CONCLUSION

The nonlinear aerodynamic loading on the lateral surface of the elastic beam travelling in
the air-filled tube has been examined, and the total pressure force on the beam q is
obtained as (3.36). As far as flexural motions of long wavelength are concerned, the flow
field may be treated by linear acoustic theory, and the only source of nonlinearity lies in
the kinematical condition on the beam surface. But as the coefficient of the nonlinear term
tends to vanish for a slender beam, the nonlinearity may be attributed to the presence of
the tube wall. It is found that the nonlinearity acts not only to increase the induced mass
but also to introduce the additional force proportional to the product of the deflection and
the square of the lateral velocity of the beam. The effect of axial curvature of the beam due
to long but finite wavelength has also been examined. It is found that this effect appears in
the form of the fourth-order derivative of the deflection, in which the lateral acceleration
of the beam is multiplied by the acoustic wave operator in the axial direction.

Using the aerodynamic loading thus obtained, and ignoring the end-effects, the
nonlinear wave equation (3.37) and its simplified version (4.8) in the case of weak restoring
force ðG51Þ have been derived. Although the effects included are small in the equation, it
should be remarked that they will accumulate to manifest themselves significantly in the
long-time behaviour of the system.
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